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Quantum e�ects could become important for particle and photon beams used in
high-luminosity and high brightness applications in the current and next generation
accelerators and radiation sources. This paper is a review of some of these e�ects.

1 Introduction

The main aim of modern particle accelerators for high energy physics is to
produce high energy particle beams and collide them with a high luminosity:

L = fc
N2

4���x�
�

y

(1)

where fc is the collision frequency, N is the number of particles in each bunch,
and ��x(�

�

y) is the rms beam size at the collision point in the x (y) direction.
Similarly, the main aim of modern synchrotron radiation facilities is to produce
x-ray photons with high brightness:

B = �
fbN

(2�)2"x"y
(2)

where � is the �ne structure constant, fb is the bunch repetition frequency, and
"x("y) is the rms emittance in the x (y) direction. If the radiation source is at
the symmetry point of a straight section, as is usually the case, the emittance
is given by

"x = �x�x0 ; "y = �y�y0 : (3)

where �x(�y) and �x0(�y0) are, respectively, the rms beam size and angular
divergence in the x (y) direction. (In Eq. (2), we have neglected the radi-
ation phase space area compared to the particle phase space area|a good
approximation for x-ray photons.)

The requirement of either high luminosity for particle collision or high
brightness for radiation production leads to the requirement of small emit-
tance. This is evident for a high-brightness radiation source in view of Eq.
(2). It is also true for high luminosity because of the practical limit on angular
divergence to achieve a small spot size ��x.
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Figure 1: Schematic illustration of various quantum e�ects in particle and photon beams
and their interaction.

Quantum mechanical e�ects become important in the dynamics of ex-
tremely high-brightness beams because the beam becomes sensitive to quantum
recoils and also because of possible wavefunction degeneracy. Various quantum
e�ects in the interaction of high-brightness particle and radiation beams are
schematically summarized in Fig. 1. This paper contains discussions of some
of these topics.

Section 2 gives a review of basic phase-space constraints due to quantum
mechanics. Section 3 is a review of a well-understood topic, the quantum

uctuation in storage rings, from the view that the synchrotron radiation is a
manifestation of the Hawking-Unruh radiation. The approach provides a fresh
look at the equilibrium emittance (section 3.2) and polarization in electron
storage rings (section 3.3). Section 4 deals with the quantum e�ects in free-
electron lasers (FELs). A simple discussion of the gain reduction due to the
quantum recoil is given in section 4.1. Quantum e�ects are also important for
photon statistics and start-up noise in self-ampli�ed spontaneous radiation,
which is the subject of section 4.2.

Max Zolotorev played an important role in preparation of this paper, es-
pecially for the material in section 3. He derived Eq. (15), which is the basis
of the rest of section 3.2, and was available for extensive discussions during the
development of section 3.4 and other parts of the paper.

This paper can be regarded as an incomplete summary of the discussions
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that took place in Working Group A. Some of the interesting and important
topics discussed are not included here, including the spin polarization in elec-
tron and proton beams by D. Barber, quantum chaos probed by rf cavities by
F. Zimmerman, and bunch di�usion in electron storage rings by J. Byrd.

2 Wave Functions and Phase-Space Distribution of Quantum Par-

ticles

In quantum mechanics, a particle in free space behaves as a wave packet1. The
wave number for 
 � 1 is given by

q =



��c
;

where ��c is the Compton wavelength = �h=mc, which, for an electron, is 3:8�
10�13 m. The Heisenberg uncertainty principle can be written as

"nx � ��c=2; "ny � ��c=2; "nz � ��c=2: (4)

Here "ni are the normalized emittances:

"(n)x = 
"x; "(n)y = 
"y; "(n)z = �z�
 ; (5)

where the transverse emittances are given by Eq. (3), and in longitudinal
emittance "nz , �z is the rms packet length, and �
 is the rms value of 
 � 
0,
where 
0 is the nominal energy.

Equation (4) can be interpreted as the fact that the phase-space area
occupied by a quantum particle cannot be smaller than ��c=2. The equality
holds for a Gaussian wave packet.

There is some ambiguity in assigning the relative magnitudes of classical
beam emittance and the single-particle, quantum emittance. The ambiguity
can be removed by introducing the emittance based on the entropy concept,
as was done for the classical wave optics 2.

The concept of phase space for a quantum mechanical particle can be based
on the Wigner distribution 3. Although the Wigner distribution cannot be as-
signed to a real probability distribution because it could be negative locally, it
is nevertheless useful because of its similarity to the real probability distribu-
tion of classical particles in phase space. Thus the transformation properties
of the quantum phase-space distribution as the particle travels through free
space and quadrupole focusing elements, etc., are identical to those in classi-
cal particle distribution as illustrated in Figure 2. Through a free space, the
quantum phase-space distribution is tilted along the x-axis exactly as in the
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Figure 2: Phase-space representation of a quantum particle and its behavior while passing
through some accelerator elements.

case of a classical distribution. Similarly, it is tilted down the x0-axis through
a focusing element, again, exactly as in the classical distribution.

A collection of quantum particles are described by a collection of wave
packets centered along the classical particle trajectories as shown in Figure
3. The phase-space distribution is then a convolution of the classical beam
distribution and the quantum mechanical distribution of a single particle, as
shown in Figure 4. The total phase-space area is minimal when the phase-space
ellipses of the classical and the quantum distributions are similar and have the
same orientation, i.e., when they are matched. Once matched, they remain
matched because the transformation properties of the classical and quantum
phase space are the same, as mentioned before.

The total phase-space volume of an N -particle beam is limited by the
statistics. For Fermions we have

"(n)x "(n)y "(n)z � N(��c=2)
3=(2S + 1); (6)

where S is the spin. For Bosons, on the other hand, the limit is given by

"(n)x "(n)y "(n)z � (��c=2)
3: (7)

Equations (6) and (7) give the degeneracy limits. Close to these limits, quan-
tum mechanical e�ects will become important.

The collection of quantum mechanical wave packets discussed here is sim-
ilar to the optical wave packets generated by a charged particle beam, such as
the synchrotron radiation beam. The synchrotron radiation beam optics based
on the Wigner distribution was discussed earlier4.

The identity of the transformation properties between the quantum me-
chanical (or optical) phase space and the classical phase space via the Wigner
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Figure 3: Quantum beam as a collection of wave packets (wavy lines) each of which is
centered along a classical trajectory (dotted lines).

Figure 4: Total phase space of a quantum beam (solid ellipse) as a convolution of the single-
particle quantum phase space (represented by small concentric ellipses) and the classical
beam phase space (dotted ellipse).
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distribution is valid for linear transport elements such as free space and ideal
quadrupoles. In the presence of aberrations, the equivalence needs to be mod-
i�ed 5.

3 Understanding the Quantum Fluctuations in Electron Storage

Rings

In electron storage rings the equilibrium beam emittance is determined by the
balance of the damping e�ect due to the classical synchrotron radiation and
the quantum 
uctuation due to the discreteness of the photon emission pro-
cess. This is a well-understood topic 6;7. During the workshops, the nature of
Hawking-Unruh radiation was the subject of extensive debate. Here we adopt
the point of view that Hawking-Unruh radiation is simply another description
of the well-known synchrotron radiation. With this point of view, it is possible
to develop a \simple" understanding of the equilibrium beam parameters in
storage rings.

The main goal of this section is to provide a new physical understanding
of well-understood phenomenon. Therefore we are interested in the parametric
relationships and order of magnitude, and will not be careful about numerical
factors of 2�, etc. in this section.

3.1 The Hawking-Unruh Picture

Following up on the celebrated observation by Hawking 8 that a black hole is
also a black body radiator, Unruh 9 found that an accelerated particle �nds
itself being in contact with a heat bath of temperature T given by

kBT =
�ha

2�c
; (8)

where kB is the Boltzman constant, �h is the Planck constant, a is the acceler-
ation, and c is the speed of light.

For an electron moving on a circular trajectory of radius � in a magnetic
�eld, the acceleration is a = 
2c2=�. Therefore, it sees a black body dis-
tribution of photons with characteristic frequency !0c (the prime represents
quantities in the instantaneous rest frame) given by

�h!0c ' kBT =
�h
2c

2��
: (9)

These photons, which appear to be real to the accelerated electron, are clearly
not real in the laboratory frame. However, they can be scattered by the elec-
tron to become real photons in the laboratory frame with the well-known
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Figure 5: The Hawking-Unruh picture of synchrotron radiation. An accelerating charge �nds
itself surrounded by thermal photons, which can be scattered by the electron to appear as
the real photons of synchrotron radiation.

synchrotron radiation characteristic frequency of �h!c ' �h
!0c ' �h
3c=�, with
a characteristic angular opening 
�1. This is illustrated in Fig. 5.

To develop the picture further, let us consider the radiated power. In
a black body distribution, there is on average about one photon per mode
occupying a mode volume �03, where �0 is the wavelength. Thus, the scattered
power is

Ps ' �
�h!0c
�03

c; (10)

where � is the cross section. On the other hand, the synchrotron radiation
power is given by Larmor's formula,

Ps =
2

3
e2
a2

c3
=

2

3
��h!02c : (11)

Equations (10) and (11) become equal if

� = ��02: (12)

This result may surprise some readers. For atoms with bound electrons,
it is well known that the scattering cross section at resonance is �02. The case
of Hawking radiation by a black hole is also similar, where �0 is give by rg ,
the horizon radius. Equation (12) can be interpreted as the statement that a
free electron can only \hold" � photons per mode, rather than one photon per
mode in the atomic case.

We emphasize that the Hawking-Unruh picture developed in the above is a
particular picture for understanding the synchrotron radiation process from a
di�erent perspective. There are other perhaps more familiar pictures. Thus the
synchrotron radiation process can be viewed as the \shedding" of Weisz�acker-
Williams photons as the electron bends in the magnetic �eld. It can also be
viewed as the scattering of virtual photons contained in the bending magnetic
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�eld. In this case, however, the scattering cross section should be taken as a
Thomson cross section.

The Hawking-Unruh picture is well suited for a simple understanding of
equilibrium electron beam parameters in storage rings, as we will discuss now.

3.2 Simple Understanding of Equilibrium Electron Distribution in Storage

Rings

Consider �rst the equilibrium energy distribution. Since the accelerating elec-
trons are in equilibrium with a heat bath with temperature given by Eq. (8),
the equilibrium kinetic energy in the beam frame must be

h�E0i =
�
p02

2m

�
=

3

2
kBT ' �h
2c=�: (13)

On the other hand, the energy spread in the laboratory frame �E0 is related
to the energy spread �E0 in the beam rest frame via

��
�E

E

�2�
= 2

�
�E0

mc2

�
: (14)

Inserting Eq. (14) into Eq. (13), one obtains

��
�E

E

�2�
' ��c


2

�
; (15)

reproducing the well-known result 7 up to a factor of order unity. Equation
(15) was derived by M. Zolotorev during the workshop.

Next, consider the 
uctuation of the betatron oscillation. In the y-direction
(vertical to the orbit plane) the electron angular divergence is given by

h 2i =
��

py
pz

�2�
=

2m

p2z

�
p2y
2m

�
=

2m

p2z

kBT

2
: (16)

Therefore, the equilibrium normalized emittance becomes

"ny = 
���h 2i ' ��c

�
���


�

�
; (17)

where ��� is the betatron wavelength divided by 2�. This is another well-known
result.
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Equation (17) is valid because the dispersion vanishes in the vertical di-
rection. In the x-direction (the horizontal direction), however, the dispersion
e�ect dominates. In that case we use Eq. (15),

h(�x)2i = �2
��

�E

E

�2�
= �2��c


2

�
; (18)

where � is the horizontal dispersion � = ��2�=�. Therefore

"nx = 

1

���
h(�x)2i ' ��c

�
���


�

�3

: (19)

Again this agrees qualitatively with the well-known result.

3.3 Suppression of Quantum Fluctuation

For most electron storage rings the quantity ���
=� is much larger than unity.
This has two consequences: �rst, the horizontal emittance given by Eq. (19)
is much larger than the vertical emittance given by Eq. (17), and second, the
vertical emittance is much larger than ��c.

However, if one considers an ideal limit � ! 1, with 
 and ��� �xed,
then the equilibrium emittance would vanish according to Eqs. (17) and (19).
In this straight focusing channel the emittance does not vanish strictly but
is limited by the ultimate emittance given by Eqs. (6) or (7) according to
whether the particles are Fermions or Bosons. This case has been analyzed
using quantum mechanics 10. However, the straight focusing channel appears
to be di�cult to implement because the required length of the channel is too
long to be practical.

On the other hand, it is not necessary to have a straight channel. All that
is necessary to achieve the ultimate emittance is

� =
�=


���
� 1: (20)

Huang et al. 11 have carried out a quantum mechanical analysis of the so-
called bent focusing system and found that the quantum 
uctuation becomes
exponentially suppressed as � becomes larger than 1, leading to the ultimate
emittance. It remains to be seen whether a practical storage ring design will
emerge from this idea.
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3.4 Understanding the Equilibrium Polarization in Electron Storage Rings

An elementary particle has the magnetic dipole moment

� = g
e�h

2mc
S; (21)

where S is the spin vector and g is a dimensionless constant that is very close
to 2 for electrons. Thus the two spin states of an electron, Sz = �1=2, will split
in energy under the external magnetic �eld B0

o = 
Boez. The level spacing is
given by

�E = g
e�h

2mc

Bo ' g�h!0c: (22)

Electrons in the upper state would make transitions to the lower state. The
electrons from this argument are expected to become 100% polarized after a
su�cient time.

This is of course not completely true. It is known that the maximum
degree of polarization in an electron storage ring is given by 12

P =
8

5
p
3
= 0:924: (23)

A lucid discussion of the success as well as the failure of the simple model based
on spin splitting and a discussion of a more accurate semiclassical calculation
can be found in Jackson 13.

The fact that the degree of polarization is not 100% can be understood
easily by the Hawking-Unruh picture 14. The limiting polarization in this case
would be

P =
1� e��E=kBT

1 + e��E=kBT
' 1� e��g

1 + e��g
: (24)

Although Eq. (24) predicts numerically a higher degree of polarization than
Eq. (23), it nevertheless provides qualitative understanding on why the polar-
ization is not pure.

It is perhaps instructive to see in more detail how the polarization evolves.
Figure 6 shows the two electron energy levels under an external DC magnetic
�eld B0. The spin 
ip is caused by the black body photons that are polarized
so that the oscillating magnetic �eld is perpendicular to B0. If the photon
energy is resonant with the level spacing, �h! = �E, spin 
ip occurs due to the
same phenomena as in nuclear magnetic resonance. In the presence of average
photon number hni = exp(��h!=kBT ), the up-transition rate is proportional to
hni, while the down-transition rate is proportional to hni+1. The equilibrium
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Figure 6: Illustration of electron energy levels in the external magnetic �eld and the spin

ip due to the perturbation by the oscillating magnetic �eld B (perpendicular to Bo) from
the apparent thermal photons.

polarization is therefore

P =
hni+ 1� hni
1 + 2hni =

1

1 + 2hni '
1� hni
1 + hni : (25)

This reduces to Eq. (24).

4 Quantum E�ects on Free-Electron Lasers

It is well known that the quantum mechanical correction on the classical gain
formula becomes important when the photon energy is comparable to, or larger
than, the gain bandwidth. A less explored topic is the role of quantum mechan-
ics in the statistics of FEL photons, especially the self-ampli�ed spontaneous
emission.

4.1 Quantum Recoil and FEL Gain

The processes of emission and absoption of a photon in the presence of n�
photons are schematically illustrated in Fig. 7. The spontaneous emission
probability as a function of frequency ! is peaked at the resonance frequency
!R and can be written as Ws(! � !R). The total emission probability We is
given by 15

We = (n+ 1)Ws(! � !e): (26)

Here the term proportional to n is due to the induced emission, and !e is the
resonant emission frequency taking into account the recoil e�ect:

!e = !0

�
1� �h!0

Ee

�
; (27)
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Figure 7: Photon emission (a) and absorption (b) in the presense of n-photons.

where !0 is the resonance frequency neglecting the recoil e�ect, and Ee is the
electron energy. Similarly, the total absorption probability is

Wa = nWs(! � !a); (28)

where

!a = !0

�
1 +

�h!0
Ee

�
(29)

is the resonant absorption frequency.
Thus the net emission probability is

�W =We �Wa =Ws(! � !e) + n[Ws(! � !e)�Ws(! � !a)]: (30)

Neglecting the �rst term in the RHS of Eq. (30) (the spontaneous emission
term) for the case n� 1, the gain is given by

G =
�W

n
=Ws(! � !e)�Ws(! � !a): (31)

Consider now the case of the stimulated emission process in an undulator,
as in the case of the usual free-electron laser. The bandwidth of the sponta-
neous undulator emission is

�!

!0
� 1

Nu
; (32)

where Nu is the number of undulator periods. Therefore, when

�h!0
Ee=Nu

� 1; (33)
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the gain can be expressed as a frequency-derivative of the spontaneous emission
spectrum. This form of the classical gain is known as Madey's theorem 16. On
the other hand, when

�h!0
Ee=Nu

� 1; (34)

then the quantum recoil is signi�cant, and the gain is reduced from the classical
case 17;18.

From the inequality of Eq. (34), one sees that the quantum recoil is im-
portant for short wavelength FELs based on low-energy electron beam, such as
the x-ray FEL using extreme high-brightness e-beam based on �eld emission
from microtips 19.

4.2 Self-Ampli�ed-Spontaneous Emission

The self-ampli�ed spontaneous emission (SASE) is receiving much attention
recently as a promising next generation light source for intense, quasi-coherent
x-rays. Classical analysis of SASE has been extensively developed in the areas
of exponential growth 20 and start-up from the electron shot noise 21;22. Under
a certain set of assumptions, including Eq. (33), it was shown that the evolu-
tion of the quantum Heisenberg operator closely parallels that of the classical
case 23. Thus, the �eld amplitude operator is given by

a(�) = f1(�)a(0) + f2(�)�(0) + f3(�)P (0); (35)

where � is the normalized time, fs are functions that grow exponentially in � ,
and

� =
X
i

e�i�i ; P =
X
i

pie
�i�i : (36)

In the above, the sum is over all the electrons, and �i and pi are, respectively,
the phase and momentum operators for the ith electron ([�i; pi] = i).

The �rst terms gives rise to the coherent state with Glauber statistics.
The second and third terms are due to the electrons' shot noise.

When

"nx"
n
y"

n
z � N (��c=2)

3 =2; (37)

then � and P can be regarded as classical stochastic variables. In this case,
the evolution and statistics of the SASE �eld are those given by the classical
analysis. On the other hand, if

"nx"
n
y"

n
z � N (��c=2)

3
=2; (38)
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then the degeneracy of the quantum wave function needs to be taken into
account. Thus the wavefunction of the N -Fermion system must be written as

j i =
X
P

(�1)Pp
N !

j �(z1)ij �(z2)i::: j 
(zn)i; (39)

where  �(z) is the one-particle wavefunction, and the sum is over all permu-
tation of fz1; : : : ; zng (for Bosons, (�1)P ! 1).

A rigorous analysis of SASE, taking into account the wave function degen-
eracy appears quite complicated. However, an understanding of the e�ect can
be seen as follows: The e�ective start-up noise of SASE intensity is propor-
tional to

h j��
NX
j=1

eikzj
��2j i = N +N(N + 1)h jeik(z1�z2)j i: (40)

The �rst term in the above corresponds to the classical noise. In the sec-
ond term, the bar denotes averaging over particles. When the inequality Eq.
(37) is valid, the second term can be calculated with classical averaging and is
negligible when the bunch length is longer than the radiation wavelength. On
the other hand, when the inequality Eq. (38) is valid, a proper quantum cal-
culation with suitably anti-symmetrized wavefunction, Eq. (39), is necessary.
In the simple case N = 2, this can be carried out explicitly, with the result

h jeik(z1�z2)j i ' e��
2

zk
2 � e�"

n
z =��c

1� e�"
n
z =��c

: (41)

Here the upper (lower) sign corresponds to the Fermion (Boson) case. This
reduces to the classical result when �nz � ��c. For �nz � ��c, the noise is the
reduced (increased) in the case of the Ferimionic (Bosonic) system.

Note added in proof.|After the manuscript was completed, it came to the
author's attention by Z. Huang that results equivalent to Eqs. (15), (17), and
(19) were derived in 1997 by K. McDonald (\The Hawking-Unruh Tempera-
ture and Quantum Fluctuations in Particle Accelerators," proceedings of 1997
Particle Accelerator Conference). Also, in 1986 J.S. Bell and J. M. Leinaas
(\The Unruh E�ect and Quantum Fluctuations of Electrons in Storage Rings,"
CERN TH 4468-86) derived a result equivalent to Eq. (17) for a weakly focused
storage ring.
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